Immunomodulatory Effects of a Brown Seaweed Sargassum fusiforme

Ambika Binesh* and Malathi Sampath

Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu (603 103), India

Keywords
Immunomodulator, Immunotherapy, Polysaccharides; Sargassum fusiforme

Open Access

Corresponding Author
Ambika Binesh
e-mail: ambikabinesh@tnfu.ac.in

Article History
Received in 2nd December 2020
Received in revised form 06th December 2020
Accepted in final form 07th December 2020

E-mail: bioticapublications@gmail.com

Abstract
Seaweed, particularly in Asian countries, has been used as food products and standard healing agents. Sargassum fusiforme (brown seaweed), as it is rich in dietary fibers and minerals such as calcium, iron, and magnesium, is commonly used in traditional cuisine. Due to its therapeutic benefits, in China, Korea, and Japan, as well as in the United Kingdom and North America, S. fusiforme remains common in diet.

Introduction
Seaweed has been used as food products and as traditional healing agents, especially in Asian countries. For a broad range of applications, there is currently an interest in growing the use of seaweed and in particular, in adding value to the extracted components. Seaweed, apart from its use as a food source, is also an excellent source of structurally diverse bioactive compounds with substantial medicinal and biomedical potential to produce functional materials such as nutraceuticals and cosmeceuticals.

Sargassum fusiforme is a macroalgal seaweed belonging to the order Fucales of the class Phaeophyceae. Because of its nutritional potential and its economic value in the pharmaceutical and manufacturing sectors, the global demand for S. fusiforme remains strong. Most studies on S. fusiforme have focused on polysaccharides; especially fucoidans is one of the most pharmacologically significant active compounds produced by S. fusiforme. Special interest is given to the specific characteristics of polysaccharides and bioactive low-molecule compounds in this species of seaweed, thus emphasizing the importance of further research in this area. S. fusiforme metabolites have been shown to have anti-tumor, antiviral, anti-aging, and anticoagulant effects. The medicinal and nutraceutical value of this seaweed must therefore be explored in order to raise public awareness and to allow effective use of this renewable natural resource.

Immunomodulatory Effects
Medical medicine focuses on the use of chemotherapeutic medications to treat malignant illnesses. These drugs however are immunosuppressive, i.e., the drugs weaken the immune responses of the patient even though the aim is to increase the likelihood of survival. Therefore, immunomodulators or other therapeutic options are required to help to mitigate these adverse effects of chemotherapy. In terms of strengthening the immune system following chemotherapy treatment, these alternatives can also accelerate recovery. In light of this a group of scientists began testing the effectiveness of S. fusiforme as an immunomodulator. Intrinsic and extrinsic substances that control or alter the scope, form, length or...
A novel fraction of SFPS, SFP-F2, was purified and characterized by Chen et al., (2018) and showed that it exerted immune-enhancing effects by activating the signaling pathways CD14/IKK/NFκB and P38/NFκB in mice. Moreover, in RAW264.7 cells, SFP-F2 increased the production of cytokines including TNF-alpha, IL-1β, and IL-6. In fine-tuning the responses of different components of the immune system, these effects may play a vital role. Consequently, S. fusiforme contains promising agents for immunotherapy.

Conclusion

Growing current studies on marine algae as a potential drug reveals that a valuable bioactive resource is the use of natural seaweed products. While promising preclinical findings have shown extensive biological activities of its compounds, there are still limited applications in clinical practice.

References

